Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Understanding uncertainties in extreme wind-wave events is essential for offshore/coastal risk and adaptation estimates. Despite this, uncertainties in contemporary extreme wave events have not been assessed, and projections are still limited. Here, we quantify, at global scale, the uncertainties in contemporary extreme wave estimates across an ensemble of widely used global wave reanalyses/hindcasts supported by observations. We find that contemporary uncertainties in 50-year return period wave heights ( ) reach (on average) ~2.5 m in regions adjacent to coastlines and are primarily driven by atmospheric forcing. Furthermore, we show that uncertainties in contemporary estimates dominate projected 21st-century changes in across ~80% of global ocean and coastlines. When translated into broad-scale coastal risk analysis, these uncertainties are comparable to those from storm surges and projected sea level rise. Thus, uncertainties in contemporary extreme wave events need to be combined with those of projections to fully assess potential impacts.more » « less
-
Abstract Reducing the switching energy of ferroelectric thin films remains an important goal in the pursuit of ultralow-power ferroelectric memory and logic devices. Here, we elucidate the fundamental role of lattice dynamics in ferroelectric switching by studying both freestanding bismuth ferrite (BiFeO 3 ) membranes and films clamped to a substrate. We observe a distinct evolution of the ferroelectric domain pattern, from striped, 71° ferroelastic domains (spacing of ~100 nm) in clamped BiFeO 3 films, to large (10’s of micrometers) 180° domains in freestanding films. By removing the constraints imposed by mechanical clamping from the substrate, we can realize a ~40% reduction of the switching voltage and a consequent ~60% improvement in the switching speed. Our findings highlight the importance of a dynamic clamping process occurring during switching, which impacts strain, ferroelectric, and ferrodistortive order parameters and plays a critical role in setting the energetics and dynamics of ferroelectric switching.more » « less
An official website of the United States government
